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SOME C L A S S E S  O F  T W O - D I M E N S I O N A L  S T A T I O N A R Y  

V O R T E X  S T R U C T U R E S  IN  A N  I D E A L  L I Q U I D  

O. V. Kaptsov UDC 532.5+517.958 

New types of plane stationary vortex formations in an ideal liquid are found. These structures 
are described by exact solutions of the equation for the stream function. This equation is the 
elliptical analog of the well-known Bullough-Dodd-Gibert-Shabat nonlinear wave equation. The 
Lyapunov stability of some of the solutions follows from Arnol'd's theorem. 

Vortex structures, which are of undoubted independent interest, attract additional interest in 
connection with the study of large-scale formations in turbulent motions. A number of representations for such 
structures in a liquid and a plasma have been found in the last decade [1--4]. In the case of plane stationary 
flows of an ideal incompressible liquid, exact solutions of the equations have been found for the stream function 

A r  = w(r (1) 

The most progress has been achieved in the investigation of Eqs. (1) with right sides sin r and sinhr 
This is because the hyperbolic analogs of these equations have been studied fairly well by Hirota's method, 
the method of inverse scattering problems, and finite-zone integration. Among nonlinear wave models, the 
Bullough-Dodd-Gibert-Shabat method occupies a special place. It should be remembered, however, that at 
the start of the century this equation was analyzed in work on differential geometry [5]. Despite this fact, no 
equation for an N-soliton solution is found in the literature. 

In the present paper, the vortex structures correspond to solutions of the equation 

Ar  = ~ exp (r -- exp (--2r ~ = 4-1. (2) 

To construct solutions of Eel. (2), we make the change r = ln($u) and we seek u in the form u = h/g. Such a 
representation of solutions is typical in the theory of solitons [6]. As a rule, the functions h and g are written 
in the form of a finite number of terms of the type ri exp (aix + biy), where ri, ai, and bi are certain coefficients. 
The main difficulty lies in finding these coefficients. An at tempt to obtain equations for the coefficients was 
made by Markov [7]. 

To find the functions h, g and g, we use the system of bilinear equations 

h2A(ln h) = h 2 - g2; (3) 

g2A(lng) = - h g  + g2, (4) 

each solution of Which generates a solution of Eq. (2) for hg ~ O. This is easy to ascertain by dividing (3) by 
h 2 and (4) by g2 and taking the difference of the resulting equations. 

Taking g = r 2, from Eq. (4) we find the representations for h and u: 

h = r 2 - 2( rA(r)  -- (Vr)2), u = 1 - 2A(ln r). (5) 

Substituting this expression for h into (3), we obtain an equation for the function r. We denote this as the H 
equation, it being the analog of the well-known bilinear equations for the r-function in Hirota's formalism [6]. 
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The difference is that  in this case, the H equation is trilinear and very cumbersome. We note that, in contrast 
to the approach suggested by Markov [7], to construct solutions of Eq. (2) one must find one function ~. The 
most important, however, is the fact that particular solutions of the H equation have the same structure as 
N-soliton solutions of Hirota's bilinear equations [6]. It is easy to ascertain by direct substitution, for example, 
that the function ~'1 = 1 + s exp (kx  4- x/3 - k2y), where s, k E R, satisfies the H equation. 

Being guided by the analogy with equations for two-soliton solutions, we can seek an exact solution of 
the H equation in the form 

where 

"r2 = 1 + f l  + f2 + Pl2flf2, (6) 

I~ = s, exp(k,x + J 3  - k S ) ,  , , , k ,  ~ a ,  (7) 

and the quantity p12 is to be determined. Substituting r2 into the H equation, we obtain a polynomial in fl  
and f2. Equating the coefficient of the polynomial for f ~ f ~  to zero, we find 

4mlm2klk2 - 9mlm2 + 4k~ki - 6 k ~  - 9k~k~ - 6 k i  + Z7 
(8) P" = 4m~m2k~k~ + 9m~m2 + 4k~kl -6k~ + 9k~k2-6k,~ + 27' 

where m~ = 3 - k 2. We then verify that v2 with the value of p12 found does satisfy H. 
It is now natural to assume that the standard equations for N-soliton solutions [6] hold in this case. 

For small N, a direct test is possible using the REDUCE system of analytical calculations, but in general 
an N-soliton equation must be verified by the method of mathematical induction. For completeness of the 
presentation, we give the solutions ra and r4: 

1"3 = 1 + f l  + f2 + Pl2 f l f2  + P la f l f3  + P23f2f3 + P12PlaP23flf213, 
(9) 

r4 = 1 + ~ f i  + ~ P i j f i f j  + E Pi jPi lPj l f i f j f l  + PnP13P14PZ4P34fl fz f3h,  
1.<i<~4 l~<i<j~<4 l<~i<j<l<~4 

where f i  are given by Eq. (7) and Pii by Eq. (8) with the subscripts 1 and 2 replaced by i and j .  
In addition to the solutions ri given above, there are others that are also expressed in terms of 

elementary functions. To construct such solutions, it is convenient to use differential relationships of a special 
kind. Note that  the solution (6) satisfies the linear differential equations with constant coefficients 

dx(dz - k l ) (dz  - k2)(dz - kl - k2)~" = 0; (10) 

dy(d,  - ml)(dy - m2)(dy - rnl - m2)v = 0, (11) 

where dz and dy are derivatives with respect to x and y, respectively, and m 2 = 3 - k~. It turns out that there 
are solutions of Eqs. (10) and (11) that  are solutions of the H equation and do not coincide with (6). 

We give two examples. If we have kl = k2 = 0, then the function 

1 + r l x e x p ( v / 3 y ) + ( r l / 6 ) 2 e x p ( 2 V ~ y ) ,  rl e R  

satisfies Eqs. (10) and (11) and H. For kl = k2 = v/3/2, a solution of these equations is the function 

t + ~ exp (~v~/z  + 3v/2) + ~ exp ( V ~ ) ,  02) 

where rl and r2 are arbitrary constants. 
Examples of this type are constructed as follows. We first find a general solution of Eqs. (10) and (11) 

that contains some arbitrary constants. Then substituting this general solution into the H equation, we obtain 
additional conditions on the constants. 

It is simple to write the differential relationships that the functions v, satisfy. These relationships for 
an arbitrary n are 

d~r 1"I ( 1-I (dx - kil - ki2 - " "  - kiv)) 7" = 0, 
l<~p<~n 1<~i1< <ip<~n 
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where l-[ is a product, m~j = 3 - k~j, and k/1 are any constants. The relationships given above can also be 

used to construct solutions. 
We turn to the construction of vortex structures. The functions ui corresponding to the soliton solutions 

vi found are calculated in accordance with (5). Level lines of the functions ui for i = 2, 3, and 4 are given in 
Figs. 1, 2, and 3, respectively. The two heavier lines correspond to values of 0 and - 1  for ui. The isolines in 
Fig. 1 were obtained for constants sl = s2 = 1, kl = 1.25, and k2 = 1; and those in Fig. 2 for sl = s2 = s3 = 1, 
kl = 1.25, k2 = 1, and k3 = 0.5; those in Fig. 3 for si = 1 (i = 1 , . . . , 4 ) ,  ki = 1, k2 = 0.8, k3 = 1.4, and 
k4 = 1.6. 

For each function ui we consider two sets in the plane of the flow: 

nn = {(x, y): ui(x, y) < 0}, Lp = {(x, y): ui(x, y) > 0}. 

The level lines lying in Ln or Lp coincide with streamlines, so Figs. 1-3 represent flow patterns in the R2(x, y) 
plane. If the set 

S.b = ( ( x , y ) :  -- 1 < a ~< u i ( x , y )  <~ b < 0} 

is compact (which is achieved by the choice of the numbers a and b), then, taking its boundary as solid walls, 
we can state that  in each case, the flow in Sab is stable against two-dimensional perturbations. In fact, the 
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following relationships are valid for Sab for certain positive numbers A and B: 

A .<. w'(r = ~exp (r + 2exp ( - 2 r  ~< B. 

The conditions of Arnol'd's theorem [8] on the stability of solutions against two-dimensional 
perturbations are thus satisfied. The vortex structure corresponding to the solution (12) is given in Fig. 
4 (rl -- r2 -- 1). 

This work was performed within tiae framework of the Integrated Project No. 43 of the Siberian 
Division of the Russian Academy of Sciences "Investigation of Surface and Internal Gravity Waves in a 
Liquid," supported by the Russian Foundation for Fundamental Research (Grant No. 96-01-00047). 
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